

AP[®] Statistics 2004 Free-Response Questions Form B

The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program[®]. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. This permission does not apply to any third-party copyrights contained herein. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 4,500 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT[®], the PSAT/NMSOT[®], and the Advanced Placement Program[®] (AP[®]). The College Board is committed to the principles of excellence and equity, and that committeent is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2004 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acom logo are registered trademarks of the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board's online home for AP professionals, visit AP Central at apcentral.collegeboard.com.

Formulas begin on page 3. Questions begin on page 6. Tables begin on page 11.

Formulas

(I) Descriptive Statistics

$$\overline{x} = \frac{\sum x_i}{n}$$

$$s_x = \sqrt{\frac{1}{n-1} \sum \left(x_i - \overline{x}\right)^2}$$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}$$

$$\hat{y} = b_0 + b_1 x$$

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

$$b_1 = r \frac{s_y}{s_x}$$

$$s_{b_1} = \frac{\sqrt{\frac{\sum \left(y_i - \hat{y}_i\right)^2}{n - 2}}}{\sqrt{\sum \left(x_i - \overline{x}\right)^2}}$$

(II) Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$E(X) = \mu_X = \sum x_i p_i$$

$$\operatorname{Var}(X) = \sigma_{x}^{2} = \sum \left(x_{i} - \mu_{x} \right)^{2} p_{i}$$

If *X* has a binomial distribution with parameters n and p, then:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

 $\mu_{\chi} = np$

$$\sigma_{\chi} = \sqrt{np(1-p)}$$

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

If \overline{x} is the mean of a random sample of size *n* from an infinite population with mean μ and standard deviation σ , then:

 $\mu_{\overline{x}} = \mu$

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

(III) Inferential Statistics

Standardized test statistic: $\frac{\text{statistic} - \text{parameter}}{\text{standard deviation of statistic}}$

Confidence interval: statistic \pm (critical value) • (standard deviation of statistic)

Single-Sample

Statistic	Standard Deviation of Statistic
Sample Mean	$rac{\sigma}{\sqrt{n}}$
Sample Proportion	$\sqrt{\frac{p(1-p)}{n}}$

Two-Sample

Statistic	Standard Deviation of Statistic
Difference of sample means	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	Special case when $\sigma_1 = \sigma_2$ $\sigma_1 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
Difference of sample proportions	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
	Special case when $p_1 = p_2$
	$\sqrt{p(1-p)} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
Chi-square test statistic =	$\sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$

STATISTICS SECTION II Part A Questions 1-5 Spend about 65 minutes on this part of the exam. Percent of Section II grade—75

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.

1. The Earth's Moon has many impact craters that were created when the inner solar system was subjected to heavy bombardment of small celestial bodies. Scientists studied 11 impact craters on the Moon to determine whether there was any relationship between the age of the craters (based on radioactive dating of lunar rocks) and the impact rate (as deduced from the density of the craters). The data are displayed in the scatterplot below.

(a) Describe the nature of the relationship between impact rate and age.

Prior to fitting a linear regression model, the researchers transformed both impact rate and age by using logarithms. The following computer output and residual plot were produced.

Regression Equation: $\ln(\text{rate}) = 4.82 - 3.92 \ln(\text{age})$										
Predictor Constant ln(age)	Coef 4.8247 -3.9232	SE Coef 0.1931 0.4514	T 24.98 -8.69	P 0.000 0.000						
S = 0.5977	R-Sq = 8	39.4%	R-Sq (adj) = 88.2%							

Copyright © 2004 by College Entrance Examination Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

- (b) Interpret the value of r^2 .
- (c) Comment on the appropriateness of this linear regression for modeling the relationship between the transformed variables.
- 2. At a certain university, students who live in the dormitories eat at a common dining hall. Recently, some students have been complaining about the quality of the food served there. The dining hall manager decided to do a survey to estimate the proportion of students living in the dormitories who think that the quality of the food should be improved. One evening, the manager asked the first 100 students entering the dining hall to answer the following question.

Many students believe that the food served in the dining hall needs improvement. Do you think that the quality of food served here needs improvement, even though that would increase the cost of the meal plan?

- (a) In this setting, explain how bias may have been introduced based on the way this convenience sample was selected <u>and</u> suggest how the sample could have been selected differently to avoid that bias.
- (b) In this setting, explain how bias may have been introduced based on the way the question was worded <u>and</u> suggest how it could have been worded differently to avoid that bias.
- 3. Trains carry bauxite ore from a mine in Canada to an aluminum processing plant in northern New York state in hopper cars. Filling equipment is used to load ore into the hopper cars. When functioning properly, the actual weights of ore loaded into each car by the filling equipment at the mine are approximately normally distributed with a mean of 70 tons and a standard deviation of 0.9 ton. If the mean is greater than 70 tons, the loading mechanism is overfilling.
 - (a) If the filling equipment is functioning properly, what is the probability that the weight of the ore in a randomly selected car will be 70.7 tons or more? Show your work.
 - (b) Suppose that the weight of ore in a randomly selected car is 70.7 tons. Would that fact make you suspect that the loading mechanism is overfilling the cars? Justify your answer.

Copyright © 2004 by College Entrance Examination Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

- (c) If the filling equipment is functioning properly, what is the probability that a random sample of 10 cars will have a mean ore weight of 70.7 tons or more? Show your work.
- (d) Based on your answer in part (c), if a random sample of 10 cars had a mean ore weight of 70.7 tons, would you suspect that the loading mechanism was overfilling the cars? Justify your answer.
- 4. The principal at Crest Middle School, which enrolls only sixth-grade students and seventh-grade students, is interested in determining how much time students at that school spend on homework each night. The table below shows the mean and standard deviation of the amount of time spent on homework each night (in minutes) for a random sample of 20 sixth-grade students and a separate random sample of 20 seventh-grade students at this school.

	Mean	Standard Deviation
Sixth-grade students	27.3	10.8
Seventh-grade students	47.0	12.4

Based on dotplots of these data, it is not unreasonable to assume that the distribution of times for each grade were approximately normally distributed.

- (a) Estimate the difference in mean times spent on homework for all sixth- and seventh-grade students in this school using an interval. Be sure to interpret your interval.
- (b) An assistant principal reasoned that a much narrower confidence interval could be obtained if the students were paired based on their responses; for example, pairing the sixth-grade student and the seventh-grade student with the highest number of minutes spent on homework, the sixth-grade student and seventh-grade student with the next highest number of minutes spent on homework, and so on. Is the assistant principal correct in thinking that matching students in this way and then computing a matched-pairs confidence interval for the mean difference in time spent on homework is a better procedure than the one used in part (a) ? Explain why or why not.

5. A researcher thinks that modern Thai dogs may be descendants of golden jackals. A random sample of 16 animals was collected from each of the two populations. The length (in millimeters) of the mandible (jawbone) was measured for each animal. The lower quartile, median, and upper quartile for each sample are shown in the table below, along with all values below the lower quartile and all values above the upper quartile.

Sample	Values Below Q ₁	Q ₁	Median	Q ₃	Values Above Q ₃
Modern Thai dog	114, 116, 116, 120	121	125	128	129, 130, 130, 132
Golden jackal	104, 104, 105, 106	107	108	112	114, 122, 124, 125

(a) Display parallel boxplots of mandible lengths (showing outliers, if any) for the modern Thai dogs and the golden jackals on the grid below.

Based on the boxplots, write a few sentences comparing the distributions of mandible lengths for the two types of dogs.

- (b) Is it reasonable to use the sample of mandible lengths of modern Thai dogs to construct an interval estimate of the mean mandible length for the population of modern Thai dogs? Justify your answer. (Note: You do not have to compute the interval.)
- (c) Is it reasonable to use the sample data of mandible lengths of modern Thai dogs and the sample data of mandible lengths of golden jackals to perform a two-sample *t*-test for the difference in mean mandible lengths for the two types of dogs? Justify your answer. (Note: You do not have to conduct the test.)

STATISTICS SECTION II

Part B

Question 6

Spend about 25 minutes on this part of the exam. Percent of Section II grade—25

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.

6. In order to monitor the populations of birds of a particular species on two islands, the following procedure was implemented.

Researchers captured an initial sample of 200 birds of the species on Island A; they attached leg bands to each of the birds, and then released the birds. Similarly, a sample of 250 birds of the same species on Island B was captured, banded, and released. Sufficient time was allowed for the birds to return to their normal routine and location.

Subsequent samples of birds of the species of interest were then taken from each island. The number of birds captured and the number of birds with leg bands were recorded. The results are summarized in the following table.

	Island A	Island B
Number Captured in Subsequent Sample	180	220
Number with Leg Bands in Subsequent Sample	12	35

Assume that both the initial sample and the subsequent samples that were taken on each island can be regarded as random samples from the population of birds of this species.

- (a) Do the data from the subsequent samples indicate that there is a difference in proportions of the banded birds on these two islands? Give statistical evidence to support your answer.
- (b) Researchers can estimate the total number of birds of this species on an island by using information on the number of birds in the initial sample and the proportion of banded birds in the subsequent sample. Use this information to estimate the total number of birds of this species on Island A. Show your work.
- (c) The analyses in parts (a) and (b) assume that the samples of birds captured in both the initial and subsequent samples can be regarded as random samples of the population of birds of this species that live on the respective islands. This is a common assumption made by wildlife researchers. Describe two concerns that should be addressed before making this assumption.

END OF EXAMINATION

Copyright © 2004 by College Entrance Examination Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

Table entry for z is the probability lying below z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0./	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.21//	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2845	.2810	.2776
-0.4	.3440	.3409	.3312	.3330	.3300	.3204	.3228	.5192	.3130	.3121
-0.3	.3821	.3/83	.3/45	.3/0/	.3069	.3032	.3594	.3337	.5520	.3483
-0.2	.4207	.4108	.4129	.4090	.4052	.4015	.39/4	.3930	.389/	.3839
-0.1	.4602	.4302	.4522	.4483	.4445	.4404	.4304	.4323	.4280	.4247
-0.0	.5000	.4900	.4920	.4880	.4840	.4801	.4/01	.4/21	.4081	.4041

Table entry for z is the probability lying below z.

Table A(Continued)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

 Table B
 t distribution critical values

	Tail probability <i>p</i>											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	.681	.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	.679	.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	.679	.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	.678	.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	.677	.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	.675	.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
8	.674	.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%
					(Confidence	level C					

Table entry for p is the point (χ^2) with probability p lying above it.

Table C	χ^2	critical	values
---------	----------	----------	--------

	Tail probability <i>p</i>											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	12.12
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	15.20
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	20.00
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51	22.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	26.02
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	27.87
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	29.67
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	31.42
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	34.82
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	36.48
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.11
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25	41.31
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79	42.88
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31	44.43
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82	45.97
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31	47.50
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73	52.00
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	54.95
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48	57.86
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89	59.30
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40	76.09
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66	89.56
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61	102.7
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8	128.3
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4	153.2