

AP[®] Chemistry 2002 Scoring Guidelines Form B

The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program[®]. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.

These materials were produced by Educational Testing Service[®] (ETS[®]), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 4,200 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT[®], the PSAT/NMSQT[®], and the Advanced Placement Program[®] (AP[®]). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2002 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board. APIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. APIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board. PIEL is a trademark owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service.

Question 1

10 points

 $HC_3H_5O_3(aq) \rightleftharpoons H^+(aq) + C_3H_5O_3^-(aq)$

- 1. Lactic acid, $HC_3H_5O_3$, is a monoprotic acid that dissociates in aqueous solution, as represented by the equation above. Lactic acid is 1.66 percent dissociated in 0.50 *M* $HC_3H_5O_3(aq)$ at 298 K. For parts (a) through (d) below, assume the temperature remains at 298 K.
 - (a) Write the expression for the acid-dissociation constant, K_a , for lactic acid and calculate its value.

$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{3}^{-}]}{[\mathrm{H}\mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{3}]}$	1 point earned for equilibrium expression
$0.50 M \times 0.0166 = 0.0083 M = x$	1 point earned for amount of $HC_3H_5O_3$ dissociating
$\mathrm{HC}_{3}\mathrm{H}_{5}\mathrm{O}_{3}(aq) \rightarrow \mathrm{H}^{+}(aq) + \mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{3}^{-}(aq)$	
I 0.50 ~0 0	
C -x +x +x	
E $0.50 - x$ $+x$ $+x$	
$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{3}^{-}]}{[\mathrm{H}\mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{3}]} = \frac{[0.0083][\ 0.0083]}{[0.50 - 0.0083]}$ $K_{a} = 1.4 \times 10^{-4}$	1 point earned for $[H^+] = [C_3H_5O_3^-]$ set up and solution

(b) Calculate the pH of $0.50 M \text{ HC}_3\text{H}_5\text{O}_3$.

From part (a):	
$[\mathrm{H^+}] = 0.0083 \; M$	1 point earned for correctly calculating pH
$pH = -log [H^+] = -log (0.0083) = 2.08$	

Question 1 (cont'd.)

(c) Calculate the pH of a solution formed by dissolving 0.045 mole of solid sodium lactate, $NaC_3H_5O_3$, in 250. mL of 0.50 *M* HC₃H₅O₃. Assume that volume change is negligible.

$\frac{0.045 \text{ mol NaC}_{3}\text{H}_{5}\text{O}_{3}}{0.250 \text{ L}} = 0.18 M \text{ C}_{3}\text{H}_{5}\text{O}_{3}^{-}$ $\frac{\text{HC}_{3}\text{H}_{5}\text{O}_{3}(aq) \rightarrow \text{H}^{+}(aq) + \text{C}_{3}\text{H}_{5}\text{O}_{3}^{-}(aq)}{1 0.50 \qquad \sim 0 \qquad 0.18}$ $\frac{\text{C}}{\text{C}} -\text{x} \qquad +\text{x} \qquad +\text{x}$ $\text{E} 0.50 - \text{x} \qquad +\text{x} \qquad 0.18 + \text{x}$	1 point earned for $[C_3H_5O_3^{-1}]$ (or 0.250 L × 0.50 mol/L = 0.125 mol HC ₃ H ₅ O ₃ and 0.045 mol C ₃ H ₅ O ₃ ⁻¹)
$K_a = \frac{[\mathrm{H}^+][\mathrm{C}_3\mathrm{H}_5\mathrm{O}_3^-]}{[\mathrm{H}\mathrm{C}_3\mathrm{H}_5\mathrm{O}_3]} = \frac{[\mathrm{x}][0.18 + \mathrm{x}]}{[0.50 - \mathrm{x}]}$	
Assume that $x \ll 0.18 M$	1 point earned for [H ⁺] (set up and calculation)
$K_a = 1.4 \times 10^{-4} = \frac{[x][0.18]}{[0.50]}$	
$x = 3.9 \times 10^{-4} M = [H^+]$	1 point earned for calculating the value of pH
pH = $-\log [H^+] = -\log (3.9 \times 10^{-4}) = 3.41$	
OR	
$pH = pK_a + \log 0.18 \text{ or } 0.045 = 3.41$	
0.50 0.125	

Question 1 (cont'd.)

(d) A 100. mL sample of 0.10 *M* HCl is added to 100. mL of 0.50 *M* HC₃H₅O₃. Calculate the molar concentration of lactate ion, C₃H₅O₃⁻, in the resulting solution.

$0.50 \ M \ \text{HC}_3 \text{H}_5 \text{O}_3 \left(\frac{100 \ \text{mL}}{200 \ \text{mL}}\right) = 0.25 \ M \ \text{HC}_3 \text{H}_5 \text{O}_3$ $0.10 \ M \ \text{HC}_1 \left(\frac{100 \ \text{mL}}{200 \ \text{mL}}\right) = 0.050 \ M \ \text{H}^+$	1 point earned for initial [H ⁺] and [HC ₃ H ₅ O ₃] OR (10 mmol H ⁺ ; 50 mmol HC ₃ H ₅ O ₃)
$HC_{3}H_{5}O_{3}(aq) \rightarrow H^{+}(aq) + C_{3}H_{5}O_{3}^{-}(aq)$ I 0.25 0.050 0 C -x +x + x E 0.25 - x 0.050 + x + x	1 point earned for showing dilution or moles of each
$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{3}^{-}]}{[\mathrm{H}\mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{3}]} = \frac{[0.050 + \mathrm{x}][\mathrm{x}]}{[0.25 - \mathrm{x}]}$ Assume x << 0.050 M $K_{a} = 1.4 \times 10^{-4} = \frac{[0.050][\mathrm{x}]}{[0.25]}$ x = 7.0 × 10 ⁻⁴ M = [\mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{3}^{-}]	1 point earned for $[C_3H_5O_3^-]$ setup and calculation

Question 2

10 points

- 2. A rigid 8.20 L flask contains a mixture of 2.50 moles of H_2 , 0.500 mole of O_2 , and sufficient Ar so that the partial pressure of Ar in the flask is 2.00 atm. The temperature is 127°C.
 - (a) Calculate the total pressure in the flask.

$$P_{H_2} = \left(\frac{n_{H_2}RT}{V}\right) = \left(\frac{(2.50 \text{ mol})(0.0821\frac{L\cdot atm}{\text{mol}\cdot K})(400K)}{8.20 \text{ L}}\right) = 10.0 \text{ atm} \qquad \begin{array}{l} 1 \text{ point earned} \\ \text{for the partial} \\ \text{pressure of } H_2 \end{array}$$

$$P_{O_2} = \left(\frac{n_{O_2}RT}{V}\right) = \left(\frac{(0.500 \text{ mol})(0.0821\frac{L\cdot atm}{\text{mol}\cdot K})(400 \text{ K})}{8.20 \text{ L}}\right) = 2.00 \text{ atm} \qquad \begin{array}{l} 1 \text{ point earned} \\ \text{for the partial} \\ \text{pressure of } H_2 \end{array}$$

$$P_{Ar} = 2.0 \text{ atm} \qquad \begin{array}{l} 1 \text{ point earned} \\ \text{for the partial} \\ \text{pressure of } O_2 \end{array}$$

$$P_{T} = P_{H_2} + P_{O_2} + P_{Ar} = 10.0 \text{ atm} + 2.0 \text{ atm} + 2.0 \text{ atm} = 14.0 \text{ atm} \qquad \begin{array}{l} 1 \text{ point earned} \\ \text{for the partial} \\ \text{pressure of } O_2 \end{array}$$

(b) Calculate the mole fraction of H_2 in the flask.

$$\begin{array}{ll} \text{Mol fraction}_{\text{H}_{2}} = \left(\begin{array}{c} \frac{\text{mol}_{\text{H}_{2}}}{\text{mol}_{\text{H}_{2}} + \text{mol}_{\text{O}_{2}} + \text{mol}_{\text{Ar}}} \right) \\ \text{mol}_{\text{H}_{2}} = 2.50 \text{ mol} \\ \text{mol}_{\text{O}_{2}} = 0.500 \text{ mol} \\ \text{mol}_{\text{O}_{2}} = 0.500 \text{ mol} \\ \text{mol}_{\text{Ar}} = \left(\begin{array}{c} \frac{PV}{RT} \right) = \left(\begin{array}{c} \frac{(2.00 \text{ atm})(8.20 \text{ L})}{(0.0821 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}})(400 \text{ K})} \right) = 0.500 \text{ mol Ar} \\ \text{mol}_{\text{H}_{2}} + \text{mol}_{\text{O}_{2}} + \text{mol}_{\text{Ar}} = 2.50 \text{ mol} + 0.500 \text{ mol} + 0.500 \text{ mol} \\ = 3.50 \text{ mol total} \\ \text{Mol fraction}_{\text{H}_{2}} = \left(\begin{array}{c} \frac{\text{mol}_{\text{H}_{2}}}{\text{mol}_{\text{H}_{2}} + \text{mol}_{\text{O}_{2}} + \text{mol}_{\text{Ar}}} \right) = \left(\begin{array}{c} 2.50 \text{ mol} \\ 3.50 \text{ mol} \end{array} \right) = 0.714 \end{array} \right.$$

Question 2 (cont'd.)

(c) Calculate the density (in g L^{-1}) of the mixture in the flask

2.50 mol H ₂ $\left(\frac{2.016 \text{ g H}_2}{1 \text{ mol H}_2}\right) = 5.04 \text{ g H}_2$	
$0.500 \text{ mol } O_2\left(\frac{32.0 \text{ g } O_2}{1 \text{ mol } O_2}\right) = 16.0 \text{ g } O_2$	1 point earned
0.500 mol Ar $\left(\frac{40.0 \text{ g Ar}}{1 \text{ mol Ar}}\right) = 20.0 \text{ g Ar}$	for mass of all species
total mass = $5.04 \text{ g} + 16.0 \text{ g} + 20.0 \text{ g} = 41.0 \text{ g}$	1 point earned
density = $\left(\frac{\text{total mass}}{\text{volume}}\right) = \left(\frac{41.0 \text{ g}}{8.20 \text{ L}}\right) = 5.00 \text{ g L}^{-1}$	for density

The mixture in the flask is ignited by a spark, and the reaction represented below occurs until one of the reactants is entirely consumed.

$$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{H}_2\operatorname{O}(g)$$

(d) Give the mole fraction of all species present in the flask at the end of the reaction.

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 point earned for 1.00 mol H ₂ O
total moles after reaction = $mol_{H_2} + mol_{H_2O} + mol_{Ar} = 1.50$ mol + 1.00 mol + 0.500 mol = 3.00 mol total	1 point earned for total moles
mol fraction _{H2} = $\left(\frac{1.50 \text{ mol H}_2}{3.00 \text{ mol}}\right)$ = 0.500 mol fraction _{O2} = $\left(\frac{0 \text{ mol O}_2}{3.00 \text{ mol}}\right)$ = 0 (not necessary)	1 point earned for any <u>two</u> mol fractions, excluding O_2
mol fraction _{Ar} = $\left(\frac{0.500 \text{ mol Ar}}{3.00 \text{ mol}}\right) = 0.167$	
mol fraction _{H2O} = $\left(\frac{1.00 \text{ mol H}_2\text{O}}{3.00 \text{ mol}}\right) = 0.333$	

Question 3

10 points

- 3. Nitrogen monoxide, NO(g), and carbon monoxide, CO(g), are air pollutants generated by automobiles. It has been proposed that under suitable conditions these two gases could react to form $N_2(g)$ and $CO_2(g)$, which are components of unpolluted air.
 - (a) Write a balanced equation for the reaction described above. Indicate whether the carbon in CO is oxidized or whether it is reduced in the reaction. Justify your answer.

$2 \operatorname{NO}(g) + 2 \operatorname{CO}(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{CO}_2(g)$	1 point earned for the balanced reaction
CO is oxidized. Carbon in CO has an oxidation number of $+2$ and in CO ₂ carbon has an oxidation number of $+4$.	
The oxidation number increases	
OR The number of oxygen atoms around the carbon atom	1 point earned for the prediction
increases; this is characteristic of oxidation.	and the explanation.

(b) Write the expression for the equilibrium constant, K_p , for the reaction.

$K_{p} = \frac{(P_{N_{2}})(P_{CO_{2}})^{2}}{(P_{NO})^{2}(P_{CO})^{2}} = \frac{[N_{2}][CO_{2}]^{2}}{[NO]^{2}[CO]^{2}}(RT)^{-1}$	1 point earned for the equilibrium expression according to part (a)
--	---

(c) Consider the following thermodynamic data.

 DG_{f}° (kJ mol⁻¹) $+ \frac{NO}{+86.55}$ $- \frac{CO}{-137.15}$ $- \frac{CO_{2}}{-394.36}$

(i) Calculate the value of ΔG° for the reaction at 298 K.

$\Delta G^{\circ}_{rxn} = \Sigma \Delta G_{f}^{\circ} (\text{products}) + \Sigma \Delta G_{f}^{\circ} (\text{reactants})$ $= 2 \Delta G_{f}^{\circ} (\text{CO}_{2}) - [2 \Delta G_{f}^{\circ} (\text{NO}) + 2 \Delta G_{f}^{\circ} (\text{CO})]$	1 point earned for the correct coefficients
= 2(-394.36 kJ) - [2(86.55 kJ) + 2(-137.15 kJ)] = -788.72 kJ - [+173.10 kJ + (-274.30 kJ)] = -788.72 kJ - [-101.20 kJ] = -687.52 kJ (units not required)	1 point earned for the answer, sign, and noting that it is products minus reactants

Question 3 (cont'd.)

(ii) Given that ΔH° for the reaction at 298 K is -746 kJ per mole of N₂(g) formed, calculate the value of ΔS° for the reaction at 298 K. Include units with your answer.

$\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T \Delta S^{\circ}_{rxn}$	1 point earned for setup and substitution
$\Delta S^{\circ}_{rxn} = \frac{\Delta H^{\circ}_{rxn} - \Delta G^{\circ}_{rxn}}{T}$	
$\Delta S^{\circ}_{rxn} = \frac{746 \text{ kJ} \cdot \text{mol}^{-1} (687.5 \text{ kJ} \cdot \text{mol}^{-1})}{298 \text{ K}}$ $\Delta S^{\circ}_{rxn} = -196 \frac{\text{J}}{\text{mol} \cdot \text{K}} \text{ or } -0.196 \text{ kJ K}^{-1}$	1 point earned for the sign and units

- (d) For the reaction at 298 K, the value of K_p is 3.3×10^{120} . In an urban area, typical pressures of the gases in the reaction are $P_{\rm NO} = 5.0 \times 10^{-7}$ atm, $P_{\rm CO} = 5.0 \times 10^{-5}$ atm, $P_{\rm N2} = 0.781$ atm, and $P_{\rm CO2} = 3.1 \times 10^{-4}$ atm.
 - (i) Calculate the value of ΔG for the reaction at 298 K when the gases are at the partial pressures given above.

$Q = \frac{(P_{\rm N_2})(P_{\rm CO_2})^2}{(P_{\rm NO})^2 (P_{\rm CO})^2} = \frac{(0.781)(3.0 \times 10^{-4})^2}{(5.0 \times 10^{-7})^2 (5.0 \times 10^{-5})^2}$	1 point earned for the value of Q according to balanced equation
$= 1.1 \times 10^{14}$	
$\Delta G = \Delta G^{\circ} + RT \ln Q$ = -687.52 kJ + 8.314 × 10 ⁻³ kJ/mol K 298 K ln 1.1 × 10 ¹⁴	
$= -687.52 \text{ kJ} + 8.314 \times 10^{-3} \frac{\text{kJ}}{\text{mol K}} 298 \text{ K} (32.35)$ $= -687.52 \text{ kJ} + 80. \text{ kJ}$	1 point earned for the value of ΔG
= -607 kJ	

Copyright © 2002 by College Entrance Examination Board. All rights reserved. Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

Question 3 (cont'd.)

(ii) In which direction (to the right or to the left) will the reaction be spontaneous at 298 K with these partial pressures? Explain.

The reaction is spontaneous (\rightarrow right) because ΔG is negative.	1 point earned for the explanation
(Reference must be according to ΔG , not ΔG°)	(must be according to sign)

Question 4

15 points

(a) A sample of 1-propanol is burned in air.

$C_3H_7OH + O_2 \rightarrow CO_2 + H_2O$ 3 points

(b) Solutions of sodium chromate and lead nitrate are mixed.

$\text{CrO}_4^{2-} + \text{Pb}^{2+} \rightarrow \text{Pb}\text{CrO}_4$	3 points
--	----------

(c) A bar of iron metal is added to a solution of iron(III) chloride.

$Fe + Fe^{3+} \rightarrow Fe^{2+}$	3 points
------------------------------------	----------

(d) Concentrated ammonia solution is added to copper(II) sulfate solution.

$\mathrm{NH}_3 + \mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}(\mathrm{NH}_3)_4^{2+}$	
OR	3 points
$OH^- + Cu^{2+} \rightarrow Cu(OH)_2$	

Note: Other complex ions can also earn credit.

(e) Sulfur dioxide gas is bubbled into a beaker of water.

$SO_2 + H_2O \rightarrow H_2SO_3$	
OR	3 points
$SO_2 + H_2O \rightarrow H^+ + HSO_3^-$	

Question 4 (cont'd.)

(f) Equal volumes of 0.1 M sodium phosphate and 0.1 M hydrochloric acid are mixed.

$PO_4^{3-} + H^+ \rightarrow HPO_4^{2-}$	3 points
--	----------

(g) Hydrogen chloride gas is bubbled through a solution of potassium cyanide.

|--|

(h) Liquid bromine is carefully added to a solution of potassium iodide.

$Br_2 + I^- \rightarrow Br^- + I_2$	3 points
-------------------------------------	----------

Question 5

10 points

Consider five unlabeled bottles, each containing 5.0 g of one of the following pure salts.

AgCl BaCl₂ CoCl₂ NaCl NH₄Cl

(a) Identify the salt that can be distinguished by its appearance alone. Describe the observation that supports your identification.

CoCl ₂	1 point earned for the answer
Cobalt salts tend to have color. All of the other salts are colorless.	1 point earned for the explanation

(b) Identify the salt that can be distinguished by adding 10 mL of H_2O to a small sample of each of the remaining unidentified salts. Describe the observation that supports your identification.

AgCl	1 point earned for the answer
AgCl will not dissolve in water. All of the remaining solids dissolve, and the resulting solution in each case is colorless and clear.	1 point earned for the explanation

(c) Identify a chemical reagent that could be added to the salt identified in part (b) to confirm the salt's identity. Describe the observation that supports your confirmation.

[There is more than one possible answer, one of which is NH ₃ .]	1 point earned for a viable reagent
Add aqueous NH ₃ to the solution. The AgCl will dissolve in aqueous ammonia.	1 point earned for an explanation that fits the reagent chosen
$AgCl + 2 NH_3 \rightarrow Ag(NH_3)_2^+$	

Question 5 (cont'd.)

(d) Identify the salt that can be distinguished by adding $1.0 M \text{ Na}_2\text{SO}_4$ to a small sample of each of the remaining unidentified salts. Describe the observation that supports your identification.

BaCl ₂	1 point earned for the answer
When Na ₂ SO ₄ solution is added to the BaCl ₂ , a white precipitate forms. Adding the Na ₂ SO ₄ solution to the NaCl or the NH ₄ Cl does not produce any change. BaCl ₂ + Na ₂ SO ₄ \rightarrow BaSO ₄ + 2 NaCl	1 point earned for the explanation

(e) Identify the salt that can be distinguished by adding 1.0 M NaOH to a small sample of each of the remaining unidentified salts. Describe the observation that supports your identification.

NH ₄ Cl	1 point earned for the answer
Adding NaOH to the NH_4Cl solution will produce an ammonia odor. No change is observed, felt, or smelled when adding NaOH to the NaCl solution.	1 point earned for the explanation
NaCl + NaOH \rightarrow no reaction NH ₄ Cl + NaOH \rightarrow NH ₃ + H ₂ O + NaCl	

Question 6

10 points

Using principles of chemical bonding and molecular geometry, explain each of the following observations. Lewis electron-dot diagrams and sketches of molecules may be helpful as part of your explanations. For each observation, your answer must include references to <u>both</u> substances.

(a) The bonds in nitrite ion, NO_2^{-} , are shorter than the bonds in nitrate ion, NO_3^{-} .

(b) The CH_2F_2 molecule is polar, whereas the CF_4 molecule is not.

The molecular geometry in both CH_2F_2 and CF_4 is tetrahedral (or the same). The C-F bond is polar. In CF_4 ,	1 point earned for discussing the similarity in molecular geometry
the molecular geometry arranges the C-F dipoles so that they cancel out and the molecule is nonpolar. The C-H bond is less polar than the C-F bond. The two C-H dipoles do not cancel the two C-F dipoles in CH_2F_2 .	1 point earned for discussing the relationship between molecular geometry and the C-H and C-F bond dipoles

Question 6 (cont'd.)

(c) The atoms in a C_2H_4 molecule are located in a single plane, whereas those in a C_2H_6 molecule are not.

The carbon atoms in C_2H_4 have a molecular	
geometry around each carbon atom that is trigonal	1 point earned for the bonding
planar (AX_3) , so all six atoms are in the same	of the carbon atoms
plane. The carbon atoms in C ₂ H ₆ have a molecular	1
geometry that is tetrahedral (AX_4) , so the atoms are	I point earned for the structure
not all in the same plane.	
OR	
The carbon-carbon double bond in C_2H_4 results in a	
planar molecule whereas the carbon-carbon single	
bond in C ₂ H ₆ results in a non-planar (tetrahedral)	
site at each carbon atom.	

(d) The shape of a PF_5 molecule differs from that of an IF_5 molecule.

In PF ₅ , the molecular geometry is trigonal	
bipyramidal because the phosphorus atom has five bonding pairs of electrons and no lone pairs of electrons. IF ₅ has square pyramdal molecular geometry.	1 point earned for discussing the difference made by the lone pair of electrons in IF_5 and how it affects
The central iodine atom has five bonding pairs of electrons and one lone pair of electrons.	the geometry of the two molecules
The presence of the additional lone pair of electrons on the central iodine atom means the molecular	
geometry is different.	

(e) $HClO_3$ is a stronger acid than HClO.

According to the formula for HOCl and HOClO ₂ , there are two	
additional terminal, electronegative oxygen atoms attached to the	1 point earned for
central chlorine atom. These additional terminal oxygen atom	discussing the
stabilize the negative charge on the anion ClO_3^- compared to	importance of the
ClO ⁻ . The result is to reduce the electrostatic attraction between	the terminal oxygen
the H ⁺ and ClO _x ⁻ .	atoms in the two
OR	structures and/or
The two additional terminal electronegative O atoms bonded to the	the enhanced
chlorine atom of ClO_3^- pull electron density away from the central	stability of the
chlorine atom. The net result is to weaken the H-O bond. Since	chlorate vs. the
HOCl has no additional terminal O atoms, its H-O bond is	hypochlorite ion
stronger. The weaker the H-O bond, the stronger the acid.	

Copyright © 2002 by College Entrance Examination Board. All rights reserved. Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.

Question 7

8 points

The diagram below shows the experimental setup for a typical electrochemical cell that contains two standard half-cells. The cell operates according to the reaction represented by the following equation.

$$Zn(s) + Ni^{2+}(aq) \rightarrow Ni(s) + Zn^{2+}(aq)$$

(a) Identify M and M^{2+} in the diagram and specify the initial concentration for M^{2+} in solution.

Electrons flow from the anode to the cathode in a voltaic electrochemical cell. The anode is where oxidation occurs, and in the reaction above, $Zn(s)$ is oxidized. So, the anode electrode must be $Zn(M)$ and the solution contains Zn^{2+}	1 point earned for correct M and M^{2+}
electrode must be Zn (M) and the solution contains Zn ²⁺ (M^{2+})	1 point for the correct concentration
(M^{2^+}) . The $[Zn^{2^+}] = 1.0 M$ in a standard cell. Additionally, the reduction potential for the Zn^{2^+}/Zn redex	of $M^{2+}(Zn^{2+})$
couple is less than that for Ni^{2+}/Ni .	
^	

Question 7 (cont'd.)

(b) Indicate which of the metal electrodes is the cathode. Write the balanced equation for the reaction that occurs in the half-cell containing the cathode.

(c) What would be the effect on the cell voltage if the concentration of Zn^{2+} was reduced to 0.100 *M* in the half-cell containing the Zn electrode?

$E_{cell} = E^{\circ} - \frac{RT}{nF} \ln \frac{[Zn^{2+}]}{[Ni^{2+}]}$	1 point earned for indicating that E_{cell} increases (is larger)
When the $[Zn^{2+}]$ is lowered to 0.100 <i>M</i> , then $Q < 1$.	
The value of the cell potential under these nonstandard	1 point earned for recognizing that
conditions is more positive than E° (under standard	Q < 1 and/or that the term
conditions). The cell voltage increases.	
	$\frac{RT}{\ln \left[2n^{2+} \right]}$
An argument involving LeChâtelier's principle is also	\overline{nF} ^m [Ni ²⁺]
acceptable: the decreased $[Zn^{2+}]$ increases the "potential"	
for the reaction to proceed to the right.	must be added to the E°

(d) Describe what would happen to the cell voltage if the salt bridge was removed. Explain.

The cell voltage drops to zero when the salt bridge is removed.	1 point earned for the effect
This happens because the salt bridge is needed to allow charge balance to occur in the solutions the electrodes are immersed in. In the absence of the salt bridge, ions cannot flow to balance the buildup of cations in the anode compartment and the buildup of anions in the cathode compartment.	1 point earned for the explanation

Question 8

8 points

The graph below shows the result of the titration of a 25 mL sample of a 0.10 M solution of a weak acid, HA, with a strong base, 0.10 M NaOH.

(a) Describe two features of the graph above that identify HA as a weak acid.

Question 8 (cont'd.)

(b) Describe one method by which the value of the acid-dissociation constant for HA can be determined using the graph above.

The K_a for the weak acid can be obtained by determining	1 point earned for indicating any one
the pH at the:	of the first three points (at left) identified
1. half-equivalence point in the titration where	on the titration curve.
$K_a = 10^{-pH}$	1 point earned for describing the
2. zero volume of base	determination of K_a from that point.
3. equivalence point(Any point on the titration curve is acceptable with justification.)	(For <i>any</i> other point on the curve, 2 points for correct justification.)

(c) On the graph above, sketch the titration curve that would result if 25 mL of 0.10 M HC1 were used instead of 0.10 M HA.

The graph should have the	1 point earned for any two features and 2 points for all three.
following features:	Beginning the pH at 1, the equivalence point at $pH = 7$ (when the
1. pH before adding any base	volume is equal to the volume of the base required to neutralize the
is 1	strong acid), and the ending pH of the solution is nearly the same as
2. the equivalence point pH	the original curve
is 7 at 25 mL	
3. the titration curve beyond	
the equivalence point is	
nearly identical to the	
original curve	

Question 8 (cont'd.)

(d) A 25 mL sample of 0.10 M HA is titrated with 0.20 M NaOH.

(i) What volume of base must be added to reach the equivalence point?

$2.5 \text{ mmol HA} = 2.5 \text{ mmol OH}^{-}$ $\frac{2.5 \text{ mmol OH}^{-}}{0.20 \text{ mmol/mL}} = 13 \text{ mL}$	1 point earned for the correct volume
--	---------------------------------------

(ii) The pH at the equivalence point for this titration is slightly higher than the pH at the equivalence point in the titration using 0.10 M NaOH. Explain.

In the titration with 0.1 M NaOH, the total volume at the equivalence point is 50 mL. In the titration with 0.20 M NaOH the total volume at the equivalence point is 37.5 mL.	
The smaller volume in the titration with 0.2 M NaOH means the [A ⁻], the molar concentration of the conjugate base of HA, is larger compared to the [A ⁻] at the equivalence point with 0.1 M NaOH.	1 point earned for correct explanation
Therefore, the pH is slightly higher.	