MATH AND SCIENCE TUTORING 805-610-1725

SKETCHING POLYNOMIALS

For any Polynomial

$$P(x) = \pm a_n x^n \pm a_{n-1} x^{n-1} \pm \dots \pm a_1 x^1 \pm a_0$$

Phast Phacts: a birdseye view of the process

- 1. What is the order?
- 3. *Reflections* $\pm a_n$
- 5. x- intercepts: roots, zeros

- 2. Symmetry of parent function
- 4. *y-intercept: constant*
- 6. Transforms and multiplicities

Housekeeping

simplify -

remove grouping symbols. remove common factors. combine like terms.

put in standard form -

descending order from left. all orders <u>must</u> appear. set equal to zero.

First term

the order is given by n -

n gives the total number of roots.

n-1 gives the maximum number of turning points.

symmetry(parent functions)-

n even: left/right symmetry. n odd: origin symmetry.

reflections -

 $\pm a_n$ reflects across x-axis.

Remember

y-intercept -

the constant term a_0 is the y-intercept.

location theorem -

a zero must lie between +'ve and -'ve remainders.

conjugate pair theorem -

complex roots come in conjugate pairs.

PARENT FUNCTIONS

The functions are shown in "standard position" with exactly one real root (zero "crossing") each.

Real and Rational roots

Descarte's rule of signs: Substitute any +'ve or -'ve value of x, the resulting number of sign changes is equal to the number of +'ve or -'ve real zeros respectively, or less by a factor of 2.

Rational root theorem: Divide every factor, both +'ve and -'ve, of the constant term a_0 by every factor of the n^{th} term coefficient a_n ; the resulting list is every possible <u>rational</u> root, this <u>does not include irrational or complex roots</u>!

Synthetic division

remainders: potential roots & remainders form (x, y) pairs. upper bound for roots: all sums have same sign. lower bound for roots: sums

have alternating signs.

*to be sure <u>all</u> roots are found finish with the quadratic eq.

Sketching

sketch in known behavior and connect the dots

Transforms & Multiplicities

Arrange factored form as: $P(x) = \pm a(x - r_1)^m (x - r_2)^n + k$ **transformations**

 $reflection: \pm scale: a \\ horiz. shift: r_n vert. shift: k$

multiplicities

m or n even: bounce at r + km or n odd: jog at r + k