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DEFINITION 
Limits describe a function’s behavior as the independent variable approaches a certain value; a limit does not depend on the value of 

the function at that point. Oscillation is a common case where no limit exists; unbounded increase/decrease has limits of +/− infinity. 
 

 Notation Properties of Limits 

 Two-sided limits The limit of a constant is that constant: 

 “The limit of f (x) as x approaches a”  

 

  The limit of a sum is the sum of the limits: 

A two-sided limit only exists if both one-sided limits 

exist and are equal.  

 One-sided limits The limit of a difference is the difference of the limits: 

 “The limit of f (x) as x approaches a from the left”  

   

  The limit of a product is the product of the limits: 

   

 “The limit of f (x) as x approaches a from the right”  

  The limit of a quotient is the quotient of the limits: 

   
   

 Limits at infinity  

 “The limit of f (x) as x approaches positive infinity” 

  The limit of a power is the power of the limit: 

   

   

 “The limit of f (x) as x approaches negative infinity” The limit of a root is the root of the limit: 

   
 

 * lim f (x) is used when all preceding cases apply.  

 
Evaluating Limits 

Limits are evaluated using many different techniques, among which are: examination (pattern recognition), substitution, and 

algebraic simplification. The following theorems apply for n > 0. 

 Polynomials Powers 

   

   

   

   

   

   

 
 

 Rationals 

   

   Trigonometric 

    

    

    

 

 

 

  Composition of Functions 
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